Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/04

= Fermilab/BD/TEV
" Beams-doc-1067-v16

June 23, 2004
Version 16.0

Tevatron Beam Position Monitor Upgrade
Front-End Software Design

Luciano Piccoli, Margaret Votava, Dehong Zhang, Dinker Charak
Fermilab, Computing Division, CEPA

Abstract

This document contains the design for the BPM/BLM upgrade data acquisition software.
The proposed design defines a general BPM framework that can be used on other similar
BPM projects across the laboratory. A specialization of the framework provides the
functionality necessary to meet the requirements of the Tevatron BPM upgrade project.

6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

1
2

INTRODUCTION......ccccinmmmmeetreccccssssssnasssasecssssssssssssssasssssssssssasssssesssssssssssssssssssssssses 5
PROPOSED TEVATRON BPM SOFTWAREcccccceerrnnnnneeeecccccssssssanseeseccscsses 6
2.1 CONTROL ..o 6
2.2 BUFFERINGuuttttiiiiieeeeeeccieeeee e eeeeae et e e eeee et eeeeeeeeesttaraeeeeeeeeesnstraeeeeeeeens 6
2.3 DATA ACQUISITION ...ouuueiiiiiiiiiiieeee ettt e e e ettt e e e e e e e e sasa e e e eeeeearnannaaes 7
2.4 ACNET COMMUNICATIONouutvireeieeeeeiniiirreeeeeeeeeeeieinreeeeeeeeeesesisrssseseseesensssssnseees 7
2.5 BUFFER READOUT......cooviiiiiiieieteeeeeeeeeeeeeeeeeeee e eaesaeeaaaesssssssesesssnnnnes 7
2.6 DEBUG AND DIAGNOSTICS ...vvvvveiieeeeeieiireeeeeeeeeeeeiirreeeeeeeeeeesesnreeeeseeeensesssrneesseseens 8
2.7 CALIBRATION.ccoiiiiiiiiii e 8
2.8 SOFTWARE DIAGRAMovveiiiiiiiiiiiieeieeeeeeeeeecaeeeeee e e eeeeeetaeeeeeeeeeeeseatnreeeseeeeesnnnnes 8
SOFTWARE DESIGN 11
3.1 USE CASES..coiiiiieeetteeeee ettt eeee e e e e e e e e e e ettt aeeeeeeeeeesataareeeseeeeennntrneeees 11
3.1.1 TRIGQUIZATION ... 12
3.1.2 Mode CRANGE..............ccceeeeeieeeeeeeee e 13
3.13 Buffer Readoutccccoooiiiiiiiiiiiiiiiee et 14
3.1.4 DIEGGNOSHICcceieeii ettt 15
3.1.5 AL T .. eeeanaene 15
3.1.6 DaAta ACGUISITION ... 16
3.1.7 State Device CRANGE............ccccccivciiiiiiiiiiiiiiieceetee e 17
3.1.8 Configuration CRANGEccoooccueeeeieeeeiieeeie et 17
3.1.9 COIIBDVQLION ... 18
3.2 FRONT-END EVENTScoiiiiiititiiee ettt e 19
33 ARMING AND TRIGGERINGccuvueeeeeeeeeeeeeeeeeeeeeereeeeeeeeeseeesseeseesessssssnenserennneennee 19
34 TEVATRON BPM DATA BUEFFERSuuvvviiiiiieiiiiiiiieeeeeeeeeeecevreeeee e e eeeeinnreeeee e 20
35 TEVATRON METADATA......ccoiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee 20
3.6 TEVATRON BPM STATE DIAGRAMcoooiiiiiiiiiiiiiii 23
3.7 CLASS DIAGRAMS ..ottt eeeee e e e e e eestaae e e e e e e eeenaaareeeeeeeeas 24
3.7.1 TASKS oo 24
3.7.2 COPETOLS. ... 25
3.7.3 EVERES ..o 26
3.7.4 Event Listeners and GeneratOrs..............uuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 27
3.7.5 DA 28
3.7.6 AL TS <. eeeaeenaes 30
3.8 TIMING DIAGRAMScoooiiiiiiiiiiiee e 30
39 ACTIVITY DIAGRAMScotioitiiieiiee e eeeeeeee e e eeeettae e e e e eeestaaae e e e e e e e eensaanneees 33
3.10 SEQUENCE DIAGRAMScociiiiiiiiiiiiieeeeeee 36
3.10.1 INIEQIIZATION ...t 36
3.10.2 Mode CRANGE............cc.eeeeeieeee et 41
3.10.3 Buffer Readoutcccoeveuvieiiiiiaiiiiesiie e 42
3104 ALGFIS ..o 42
3.10.5 EVORLS ..o 43
3.10.6 Data ACGUISTIIONoeeieiieiieeie ettt 44
311 PACKAGES ..ottt ettt e e e et e e e e e e et ae e e e e e e s e e natranees 45

6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.11.1 Generic BPM classes (GBPM)ccccoooiiiiiieiiiiaiiieeiieeeee e 46
3.11.2 Tevatron BPM classes (TBPM)ccccccooueeeieieiiieieiieeeiieeeee e, 46

3.12 IMPLEMENTATIONoiiiiiiiiiiiiiiiiieieeie ettt sttt sr e st 48
3.12.1 Building The Generic Frameworkc..cccccccuvoenviiniiiicnoiniinennenne 48
3.12.2 Building Tevatron BPM SOftWare..............cccccccoevueeieeeieiiieaiieeieeeiieeeeens 50

4 APPENDIXuuiuicriisinseinnnsecssecsnnsesssecsssssesssessasssssssssssssns 53
4.1 CLASS DIAGRAM ...ttt st 53

5 BIBLIOGRAPHY ..cuuiiiriniisnnsnicsnnsenssecssnssssssiessissssssessssssssssssssssssssssssssssssssssssesns 54

Table of Figures

Figure 1 - Proposed tasks, queues, command and data flowccccoeiiiniiiiinniinnnne. 9
Figure 2 - Tasks for the TBPM SYStEMccccccuiiriieiiieiiieiieeie et eee e 10
Figure 3 — Tevatron BPM front-end software use cases..........cceceeveeiiieenieeniienieerieeneens 11
Figure 4 - Tevatron BPM state diagramcccceeeevieriieiiieiiieiieeie e 23
Figure 5 - Data acquisition task state diagram............cccceevviieiiiiiiieniieniieieeeee e 24
Figure 6 - Class diagram for tasks in the SYyStemcccccuveviiieiieniieeiiienieereecie e 25
Figure 7 - Main control Classes.........cc.eeiiiiiiiiiiiiieeiee et 26
Figure 8 — Handling events in the SyStem..........cccueeiiiieiiiniiiiieieciecee e 27
Figure 9 - EVENt ENETALOTSccuiiiiiiiieiiieiie ettt ettt ettt ettt et et e e saeeens 28
Figure 10 - EVENt LISTENETIS ..c..eieiiiiiieiieeiieiieeie ettt ettt ee e siveesseesnneensaesasaens 28
Figure 11 - Reading and saving data.............ccooieiiiiiiieiiiiiiee e 29
Figure 12 - Buffer readout related Classesoocvevevieeiiiiiiiiiieiieeieeeeeie e 29
Figure 13 - ALArm CIASSES ...c.eeiiiiiiiiiiieiie ettt ettt 30
Figure 14 - Timing diagram for the BPM fast abort DAQcccooeeiiviiiieniieiieieeee 31
Figure 15 - Timing diagram for BPM fast and slow abort DAQ and BLM fast abort DAQ
... 31
Figure 16 - Timing diagram for a turn-by-turn measurement.............cccceeevveererveerenveeennnen. 32
Figure 17 - ControlTask TIOWcoccueeouiiiiiiiieeie ettt ettt ens 34
Figure 18 - DataAcquisitionTaSks TlOWcccueeecuieeeiiieeciie et 35
Figure 19 - BufferReadoutTask flOW...........cccoooiiiiiiiiiiiiiiecieeteee et 36
Figure 20 — Initialization SEQUENCEcceiuviieiiieeiieeeieeeeieeeeieeeseeeesreeesreeesereeeseaeeeenee s 37
Figure 21 - Hardware initialization SEQUENCEc.eerieeriieriieiieeieeiee e eiee e eseeeeaeens 38
Figure 22 - Metadata initialization SEQUENCEcccueeervieeriieeiiieerieeeieeeereeeeeeeeeeeeeeeees 38
Figure 23 - Buffer initialization SEQUENCEcccueeriieeiieriieiiieiie e eiee e 39
Figure 24 - Data acquisition tasks initialization SEqUENCE...........cccvveerveeerveeerieeeireeennen. 39
Figure 25 - Alarm initialization SEQUENCE..........cccuterieeriieiiieiieeie et eniee et e seveeeee e e 39
Figure 26 - Event generators initialization SEQUENCE.........c.eeerveeerveeerieeeiieeeeeeeieeeeenees 40
Figure 27 - Tasks iNTtialiZationccecuieriiiiiieiieeiieeie ettt 40
Figure 28 - Changing mMoOdeS.........ccuieiiiieiiieeiiie ettt et e e e e e e seaeeeenees 41
Figure 29 - Return to close orbit Modecocvieiiiiiiiiiiiiiieiecee e 42
Figure 30 - Fast abort buffer readoutcoocuvveiiiieiiieeiee e 42
Figure 31 - Alarm generation...........cccuieriieiuieiieeitieeieesiie et esiee et e saeeteesiaeenseesnseeseeensaens 43

3 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Figure 32 - Clearing an alarmccoeoiiiiiiiiiieiiienie ettt ettt e 43
Figure 33 - EVENt GeNeration........cccvieviiieiiieeciieeciieeeteeeteeeiteeeeveeeaaeeesaeeeeaeeeaneeennaees 44
Figure 34 - State device Chan@ecocuieiiiiiiieiieeiieee ettt 44
Figure 35 - Fast abort trig@er SENerationcccccveeeeiieeiiieeriieeeriieeeeeeeree e e eeeeeeeeees 45
Figure 36 - Turn by turn data acqUISItIONc.eecuieeiieniieeieeiie et esee ettt e e e 45
Figure 38 — Complete TBPM front-end software class diagram...........cccccceeveveerrveennenn. 53

4 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

1 Introduction

This document describes the design chosen for the front-end data acquisition software for
the Tevatron BPM upgrade. The goal is to provide clear guidelines for implementing and
delivering a system that fulfills the requirements as specified in document #860.

Besides the requirements, other factors have to be considered for the design in order to
achieve high quality software. These are:

- Maintainability: the software should be easy to maintain and can be easily adapted
to new requirements with only minor changes;

- Extensibility: software should be easily extensible. The addition of new modes of
operation should be a simple task involving minimal changes that do not affect
existing components;

- Flexibility: configuration of the software should be easy to modify, adapting it to
new and unexpected situations.

- Portability: software can be reused on another machines (e.g. Main Injector)

With these principles in mind the expected output is:

- A working Tevatron BPM system that is maintainable and extensible.
- A generic software framework for Beam Position Monitor systems;

The next describes the proposed design for the Tevatron BPM front-end software.

5 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

2 Proposed Tevatron BPM Software

The proposed Tevatron front-end data acquisition software is based on the software
developed for the Recycler. Many of its components can be reused on the Tevatron
systems, such as timing control modules and data acquisition procedures.

Additionally, the Tevatron system would benefit from the use of the backdoor services,
making it possible to control and read out data bypassing the ACNET/MOOC
infrastructure.

2.1 Control

Similar to the recycler software, the Tevatron BPM software will have a control task that
is responsible for receiving ACNET commands for switching between modes of
acquisition. The control task will have all data acquisition tasks started at initialization',
so no additional time is needed to create tasks while the system is running. The control
task needs to resume or suspend tasks according to the mode selected. VxWorks takes
about five times longer to start a task than to suspend or restart it (in microseconds on the
PPC603 processor).

Before letting the data acquisition tasks run, the control task must configure the EchoTek
boards and the timing hardware. On the recycler software, the configuration is done by
the data acquisition task when it is started.

The control task will receive commands through an input/command queue. MOOC and
the backdoor send events to the queue. It is also possible to run simple control commands
within the context of MOOC, avoiding the queueing overhead. The control task also is
able to receive certains event, such as specific TCLKs (e.g. $47 for Tevatron abort).

2.2 Buffering

Each data acquisition task has a data source and an output data buffer. Its data source can
be either hardware entities (EchoTek or BLM boards), or the output buffer of another
task, while its output data buffer can be another task’s data source. For controlling access
and avoiding race conditions, the implementation should consider the use of semaphores
or other mechanism to protect data buffers.

Buffers can be used as a data destination or a data source. On a trigger, a data acquisition
task may request data from the hardware, or it may request data from an internal buffer.
This should be handled as transparently as possible. In both cases, the destination of the
read out data will be another buffer. The ability of having a buffer as a data source helps
to implement slow read out buffers, which would get input data from fast read out buffers

' The recycler software has only one data acquisition task running at a time. When modes are switched, the
control task starts the task for that new mode.

6 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

(e.g. Fast Abort Buffer vs. Slow Abort Buffer (a more detailed list of buffers is given in
sections 3.4 and 3.11.2.1)).

2.3 Data Acquisition

The system will have several readout tasks. Each one will be responsible for filling at
least one data buffer (e.g. BPM Fast Abort, BPM Slow Abort and BLM Display). Every
task runs within a closed loop and remains waiting for an event, which is received
through its input event queue.

The input event can be generated by other tasks in the system or by interrupt handlers.
The control task can issue an event for arming a turn-by-turn measurement, which is sent
to the input queue of the turn-by-turn task. The data acquisition task uses it to prepare
itself for the acquisition, which happens when the timing board generates an interrupt.
The interrupt handler creates an event that goes into the task’s queue, informing that the
EchoTek boards can be readout.

Similarly, for TCLKs, when an interrupt is generated by the PMCUCD card, the interrupt
handler creates an event and puts it into the event queue of the task that is expecting that
particular TCLK.

In general terms the data acquisition cycle is: data acquisition is armed; task receives an
event task performs the acquisition; data is saved into a data buffer.

2.4 ACNET Communication

All communication via ACNET will be handled by callbacks, which in turn will invoke
the BPM system. There are basically two types of commands coming from ACNET:
control commands and data request commands. The bottom part of Figure 1 shows the
interaction between MOOC and the front-end system.

Simple commands can be handled directly at the callback level. An example of simple
command is the change of a single EchoTek channel configuration through the SETDAT
protocol. For commands that require more complicated actions, such as changing the
mode of operation, the callback posts a request (or event) into the control task’s input
queue.

Data request commands on the other hand are handle directly by the callbacks invoked by
MOOC. The callbacks will select the buffer that was requested, pack the data into the
format expected by the online side and send it.

2.5 Buffer Readout

7 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

The user requests for reading data buffers are received via MOOC/ACNET according to
the above section. The callback provided to MOOC for handling data requests contains
access to all buffers in the system and also knows how to pack the data according to the
online specifications. It is important to notice that this code will run within the MOOC
context and not in other task’s context (as when handling mode changes).

2.6 Debug and Diagnostics

The backdoor scheme may be used in the Tevatron BPM data acquisition software. The
communication with the data acquisition software will follow the same method used by
ACNET/MOOC calls. Whenever a request comes from the labview interface that is
mapped to the same callbacks used by MOOC.

2.7 Calibration

The calibration of the system is done on the offline processing. However, the front-end
software is required to know when a data acquisition is generating data for offline
calibration. Any data generated has to be tagged as calibration data. Additionally, the
front-end is able to change configuration of the timing system and EchoTek boards for
calibration operations. The data also will have metadata describing the configuration used
for data acquisition.

2.8 Software Diagram

The following picture (Figure 1) shows the proposed tasks, queues, data and command
flow for a generic BPM system. The structure shown is valid for one crate within the
system. The blue circles represent the tasks; the green boxes are the input queues for the
tasks; the yellow boxes are the data sources and data destinations. The boxes on top of
MOOC represent the callbacks used to direct control commands and to retrieve data from
the buffers.

8 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Diata Source
(EchoTek, BLM or buffer)

Datal

Spavn Alamn ffrom any partof the sysem)
Clear

Data {

Alarm Cuele

TCLK Conrol request Data Buffer
Mode Change Alarn
TCLK
Event Qusue Data
IE

Mode dhange
Conirol request

2ms, 1=s2c, A CLK

Trigger

Source
[intemupts]

Alam

¥
Control Buffer Readout
Sta'us<:
RETDATISETDAT FTF Alamm

Glelele:

Figure 1 - Proposed tasks, queues, command and data flow

Object oriented design is used to realize the entities depicted in Figure 1. The Unified
Modeling Language is used to describe general use cases, classes and its relationships,
control and data flows.

Figure 2 shows a specialized version for the Tevatron based on the generic BPM system
(for a single crate). In the picture there are several data acquisition tasks (named BPM
Fast Abort Task, BPM Slow Abort Task, Turn by Turn Task, etc), some buffers are
defined (BPM Fast Abort Buffer, BPM Slow Abort Buffer, Turn by Turn Buffer, etc. It
also shows the control task handling directly the timing, diagnostic and calibration
hardware, besides the EchoTek cards.

The figure bellow also defines the TCLKs received by the system. The control task
receives TCLK $71, $77, $4D and $47. TCLK $71 signals prepare for beam; TCLK $77
signals an arm turn-by-turn measurement; $47: beam has been aborted; and $4D: arm
injection turn-by-turn measurement. Other TCLKSs are directed to data acquisition tasks,
such as TCLK $75 for a BPM profile measurement, TCLK $78 for BPM display
measurement and TCLK $76 for BLM profile measurement.

9 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Zrs Ewent Gueus

1sec

Trigger

Trigger

Tirning board
intermupt

Trigger Ewert GHuesus

Tirning board
intermupt

:

Trigger Ewert GQueus

TCLK 4§75

i

Trigger Ewent Qusue

TCLK §78

:
|

Trigger Ewent Glusus

1sec
Trigger

i

Ewent Queue

TCLK §76

:

Trigger Ewert Gusus

Display

Dizplay
Task

EchoTek
EPM Fast Abart Buffer

EchoTek

ih|-| Injection Tum by Tum Euffer |—
_4-| EFM Fast Abort Buffer
-

ELM Display Buffer

Diagnostic Hu

Tirning Hu/

EchoTek

Calibration Hu'

@ TCLK $71 §77 $0 47 -

frlode change

Cortral Gueus

Spawn

Control nequest

EFM Slow Abort Buffer
Tum by Tum Buffer

[Queue
DTaSk

[Hardware
|:| Data Buffer

|:| Diata Source &
Buffer

Data

Clear Alam

Llamn ffrom any partof the sysem)

k

Coniral

Euffer Resdout

Alarmn Clueus

Status <:

RETOAT/SETOAT

| Fr

Alarmn

Mooc

Figure 2 - Tasks for the TBPM system

10

6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3 Software Design

The remaining sections of this document describe the design of the Tevatron BPM
upgrade front-end software. It takes into consideration general software quality aspects as
well as aims to provide an extensible framework for future similar projects within the
laboratory.

The following sections describe the use cases identified for the project, static structures
and dynamic diagrams. Use cases follow the format adopted by Alistair Cockburn
[Cockburn] and the notation of static and dynamic diagrams follow the UML standard
[Fowler].

3.1 Use Cases

One crate in the TeV BPM DAQ system interacts with the extenal world through actions
initiated by actors. The main actors interacting with the system are: User and Event.
Actors being used by the system are: EchoTek, BLM and TimingSystem.

The User can be a control room operator, a beam physicist or another software. The User
interacts with the system by initializing it; requesting mode changes; reading out its
buffers; activating diagnostics or calibration. On any of these interactions there can be
alarms, which is handled by a separate use case.

The other actor in the system, the Event, is any external event that is capable of changing
the internal state of the system. An event activates the data acquisition from BPM and
BLM boards; and is input to state device changes. The user may request configuration
changes of the system at any time.

TeV BPM DAQ System (crate)

= witislization]
(A

—
adtpts sy
I | O
L eusgss sy
2»{Mada Change }7} } I
oy A

>0

Figure 3 — Tevatron BPM front-end software use cases

11 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Figure
ellipse

3 shows the use cases identified for the Tevatron BPM front-end system. Each
represents one use case. The use cases are described in more detail in the

following sections.

3.1.1 Initialization

3.

3.

SNk W=

7.

8.

9.

10.
11.
12.
13.
14.
15.
16.

3.

1.

2.

1.1.1 Description

This use case allows the user to initialize one front-end DAQ system crate.

1.1.2 Basic Flow of Events

User ask the system (one crate) to be initialized
Control task is created
Configuration for the crate is downloaded
Configuration task initializes status of state devices
Control task initializes EchoTek hardware

a. EchoTek hardware is tested (optional)
Control task initializes BLM hardware

a. BLM hardware is tested (optional)
Control task initializes timing system

a. Timing hardware is tested (optional)
Control task creates data acquisition tasks
Control task allocates internal buffers
Control task creates alarm task
Alarm task announces itself to the tasks in the system
Trigger generators are created
Trigger listeners are registered
System is enabled
All tasks are started
System is ready for use (READY state)

1.1.3 Alternative Flows

Control task fails to start (2) — other basic OS failures follow same steps
a. Report error to user through ACNET variable
b. Generate alarm (if alarm task is running)

Could not download configuration (3)
a. Use default configuration
b. Limit usage of the system (e.g. don’t support turn-by-turn requests)
c. Report error to user through ACNET variable

3. EchoTek card(s) did not pass test (5.a)

a. Generate internal alarm
b. Set ALARM state
c. Report error to user through ACNET variable

12 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

4. BLM board(s) did not pass test (6.a)
a. Generate internal alarm
b. Set ALARM state
c. Report error to user through ACNET variable

5. Timing system did not pass test (7.a)
a. GQenerate internal alarm
b. Set ALARM state

c. Report error to user

3.1.1.4 Preconditions
Crate is turned off or rebooted.

3.1.1.5 Postconditions

System is taking data in normal operation mode (READY state) or in a limited
operational mode.

3.1.2 Mode Change

3.1.2.1 Description

This use case allows the user to request a mode change of the front-end DAQ
software. There are basically two modes of operation: closed orbit and turn-by-turn. The
default mode is closed orbit, and the turn-by-turn mode is enabled at user requests or at a
certain TCLK event. When changing modes, the system has to reload and reprogram the
EchoTek boards and timing hardware according to the mode specification.

3.1.2.2 Basic Flow of Events

User requests a mode change (e.g. from closed orbit to turn by turn)
MOOC call back creates an internal request for mode change
Request is posted to the control task queue

Request is retrieved by the control task

Control task checks the request

EchoTek boards are configured

Timing system is configured

Triggers are enabled/disabled (e.g. 2 ms closed orbit trigger)

Read out tasks are suspended/resumed

0 Mode has changed (CLOSED_ORBIT or TURN BY TURN state)

h‘\’->S>°.\‘S’\.V‘:b.‘”!\’.*‘

3.1.2.3 Alternative Flows
1. An event triggers a mode change (1,2)

2. Mode cannot be changed (4)

a. GQenerate internal alarm
b. Return error to user through ACNET variable

13 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3. Requested mode change to the current mode (4)
a. Restart mode (e.g. second turn-by-turn request); or
b. Ignore request
c. Return error to user through ACNET variable

4. Data acquisition task for current mode is in the middle of a readout (4)
a. Data partially read must be thrown away
b. Pointers and counters are not updated
c. Data acquisition task has to go back to a safe place when it is restarted, i.e.
it cannot go back to where it was when the mode was changed (unless
there is no data loss or data read is consistent).

5. Failure to change mode (6 to 9)
a. There are conditions preventing the system to change mode
b. Return error to user through ACNET variable

3.1.2.4 Preconditions
System is in a known operational state.

3.1.2.5 Postconditions

System has been reconfigured to run in a new mode and is acquiring or ready to
acquire data.

3.1.3 Buffer Readout

3.1.3.1 Description

This use case allows users to request data from the front-end software. Data is
read out from the data acquisition boards and stored in internal buffers. Data from these
internal buffers are requested in this use case, and portions of it or all its contents are
returned.

3.1.3.2 Basic Flow of Events

User requests data buffer from the system

Callback for buffer data readout is invoked by MOOC

The request is verified and the buffer is selected

Buffer is read and converted to online format (see document #860 for structures)
Data is sent back to the user

M

3.1.3.3 Alternative Flows

1. Request is not valid (3)
a. The data requested does not exist or is out of boundaries
b. Return error stating the problem found

2. No data in the buffer (4)
a. Return error specifying that there is no data to be read

14 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.1.3.4 Preconditions
Internal data buffers have data.

3.1.3.5 Postconditions
None.

3.1.4 Diagnostic

3.1.4.1 Description
Use case used when user wants to get more information about the current system
situation. Level of debug can be increased; buffers, queues and tasks are monitored more
closely.

3.1.4.2 Basic Flow of Events

1. User requests system to enable diagnostics through an online application
2. An internal request is created
a. A request can be:
1. Increase debug/diagnostic level
ii. Return statistics information
iii. Start test sequences (for EchoTek, timing board, calibration
subsystem)

3. Request is posted to the control task queue
4. Request is retrieved by control task
5. Control task performs the diagnostic request

3.1.4.3 Alternative Flows

1. System cannot enter diagnostic mode (5) (e.g. system is currently in turn-by-turn
mode — high priority)
a. Return error to the user through ACNET variable

3.1.4.4 Preconditions
System has been initialized and may not be performing well.

3.1.4.5 Postconditions

If item 2.a.i — system is running at a higher debug/diagnostics level. Performance
of the system may be affected.
If item 2.a.ii1 — test are finished and system is back to normal operation.

3.1.5 Alarm

3.1.5.1 Description

This is a use case used by other use cases in the system. It is triggered by alarm
situations within the system. It is generated internally and there is no input from external

15 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

actors. The alarm is handled by an alarm task, which may announce the alarm to the
external world, depending on how critical is the situation. The system enters an alarm
state that is cleared when the alarm conditions have been removed.

3.1.5.2 Basic Flow of Events

An internal failure is detected

An alarm is created

Alarm is posted to the alarm queue

Alarm task retrieves alarm from queue

Alarm task evaluates the priority of the alarm
Alarm task generates an external alarm, if necessary
Control task is informed of the alarm state (if control task is not the generator of
the alarm)

8. Control task decides the alarm is cleared

9. Alarm clear event is created

10. Alarm clear is posted to the alarm queue

11. Alarm task retrieves alarm clear from queue

12. Alarm task clear the alarm state

Nk W=

3.1.5.3 Alternative Flows
1. User clears the alarm through the online software (8)

3.1.5.4 Preconditions
A failure or a potential future failure is detected.

3.1.5.5 Postconditions

System is set to an alarm state; the state can be cleared after the alarm condition is
removed.

3.1.6 Data Acquisition

3.1.6.1 Description

This use case describes the actual data acquisition part of the system. The external
actors involved with this use case are the triggers, echotek and BLM. A trigger is any
entity that starts the action of data acquisition. Following a trigger, the system has to
perform the read out of a data source (EchoTeks, BLMs or internal buffers) and save the
data to internal buffers.

3.1.6.2 Basic Flow of Events

A trigger is generated and received by the system (TCLK or time trigger)
A trigger event is created and posted to an event queue

The data acquisition task retrieves the trigger from the queue

Data acquisition task performs the data acquisition

Data is saved in an internal buffer

Data acquisition task is ready for next trigger

ANl S e

16 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.1.6.3 Alternative Flows

1. Data source is not ready to send data (4)
a. Data acquisition task has to wait for a defined amount of time
b. Ifthere is a time out an alarm is generated

3.1.6.4 Preconditions

Data acquisition hardware and timing system are configured and ready to provide
data. The configuration is changed by the control task.

3.1.6.5 Postconditions
New data is saved in internal buffer and can latter be retrieved by the user

3.1.7 State Device Change

3.1.7.1 Description

This use case illustrates the reaction of the system after a state device is changed.
A state device can be considered an actor, more specifically a frigger, even though it does
not trigger any data acquisition. The system has to monitor several state devices, which
contain information about the accelerator status, beam type, etc. Those are important
information that is part of the metadata sent back to the user (Buffer Readout use case).

3.1.7.2 Basic Flow of Events

A state change is received by the system
A state change event is created

The event is posted to the control queue
The control task receives the event
Control task updates the metadata

SNk W=

3.1.7.3 Alternative Flows
None

3.1.7.4 Preconditions
None

3.1.7.5 Postconditions
Metadata is updated with latest state device status.

3.1.8 Configuration Change

3.1.8.1 Description

The configuration use case describes the actions taken by the user in order to change
the behavior of the system. The user can specify new values for calibration, timing, filter
settings, etc. During the initialization, the system receives a default configuration, and
this use case represents system changes after the initialization phase.

17 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.1.8.2 Basic Flow of Events

User request a configuration change (through some mechanism not defined yet)
A control request is created

Control task receives the request

Request is validated

Check if configuration can be changed

Change configuration

S

3.1.8.3 Alternative Flows
1. Request is handled at the callback level — skip to steps (2, 3)

2. Request is not valid (4)
a. Generate error to user through ACNET variable
b. Do not change configuration
c. Generate internal alarm

3. Configuration cannot be changed (e.g. system is in turn-by-turn mode) (5)
a. Generate error to user through ACNET variable
b. Generate internal alarm

3.1.8.4 Preconditions
System is initialized.

3.1.8.5 Postconditions
New configuration has been applied to the system.

3.1.9 Calibration

3.1.9.1 Description

This use case shows the steps that allow the user to take a calibration run with the
system. This use case is identical to the Data Acquisition use case (section 3.1.6). The
difference is that data returned to the online user is tagged as ‘calibration data’.

3.1.9.2 Basic Flow of Events

1. Tag data as being ‘calibration data’
2. Use Data Acquisition use case

3.1.9.3 Alternative Flows
Same for the Data Acquisition use case.

3.1.9.4 Preconditions
Same for the Data Acquisition use case.

3.1.9.5 Postconditions
Same for the Data Acquisition use case.

18 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.2 Front-End Events

The front-end software is composed by several tasks running concurrently. The
communication between the tasks happens via message queues. Tasks are able to send
and retrieve information from the queues.

The information sent and received from the queues is called event. An event is a simple
data structure that signals that something has happened and some action has to be taken
by the receiver.

One example of usage of an event is when the front-end receives a TCLK. The TCLK is
first serviced by an interrupt handler, which fills an event with the TCLK information and
sent it to the queue of the task that is waiting for that specific TCLK.

Similarly, when EchoTek boards are new data from from a turn-by-turn measurement, the
timing board generates an interrupt that is caught by an interrup handler, which in turn
creates the event with information about the new measurement and send it to the task that
is waiting for the turn-by-turn measurement to complete.

3.3 Arming and Triggering

The Tevatron BPM front-end software must switch modes when arming itself for turn-
by-turn and injection turn-by-turn measurements. The following tables (Table 1 and
Table 2) define the events for arming and triggering BPM and BLM readouts.

DAQ Type Arm Readout Trigger

Fast Abort Closed Orbit

TCLK $71; Return from TBT

2 ms timer

Slow Abort Closed Orbit TCLK $71; Return from TBT 1 second timer

Fast Time Plot (FTP) TCLK $71; Return from TBT User request

Profile TCLK $71; Return from TBT TCLK $75

Display TCLK $71; Return from TBT TCLK $78

Snapshot TCLK $71; Return from TBT User request

Turn By Turn User request Timing board interrupt

Injection Turn By Turn

V:BPJINE and TCLK $4D

Timing board interrupt

Injection Closed Orbit

TCLK $77; User request

Injection Turn By Turn complete

Table 1 - BPM arming and triggering

DAQ Type Arm Readout Trigger
Fast Abort Initialization 1 second timer
Display Initialization TCLK $76
Fast Time Plot (FTP) Initialization User request

Table 2 - BLM arming and triggering

19

6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Table 1 does not show interactions between the timing board and the EchoTek boards.
Additional arming and triggering using TVBS occur between the boards timing board and
the EchoTek boards (see timing board document #?7?). The front-end software does not
receive TVBS signal and does not trigger the EchoTek boards for closed orbit or turn-by-
turn measurements (e.g. the timing board received the TVBS $77 signal which triggers a
turn-by-turn measurement). The only interaction between front-end software and the
EchoTek boards is during configuration and data readout from the EchoTek random
access memory.

3.4 Tevatron BPM Data Buffers

The data input for the system come from the EchoTek boards and the BLM chassis.
Basically they provide information about the beam position, intensity and loss. All those
values, however, need to be taken at different times and hardware configurations. All data
acquired in different modes and times must be kept in distinct buffers, making it
accessible at any time by the online user.

These buffers are defined in the specifications document (section 2.3) and illustrated in
the AD document #903. The following tables (Table 3 and Table 4) describe the buffers
identified for the Tevatron BPM system.

Buffer Type | Size | Readout Trig. | Source Stops Cleared
Fast Abort Circular | 1024 | 2ms timer EchoTek TCLK $47; TBT never
Slow Abort Circular | 1024 | 1 second timer Fast Abort TCLK $47; TBT never
Fast Time Plot | Circular User request Fast Abort never never
Profile Frame | FIFO 128 | TCLK $75 Fast Abort when full TCLK §71
Display Frame | FIFO | TCLK $78 Fast Abort never never
Snapshot FIFO 1 User request Fast Abort never never
Turn By Turn | FIFO 8192 | Timing board intr | EchoTek end TBT TBT Arm
Injection TBT | FIFO 8192 | Timing board intr | EchoTek end TBT TBT Arm
Injection C.O. | FIFO | Inj. TBT complete | TBT Buffer | end TBT TBT Arm

Table 3 - BPM Buffers

Buffer Type | Size | Readout Trig. | Source Stops Cleared
Fast Abort Circular | 1024 | 1 second timer BLM never never
Display Frame | FIFO 1 TCLK $76 Fast Abort never never
Fast Time Plot | Circular User request Fast Abort never never

Table 4 - BLM Buffers

3.5 Tevatron Metadata

Table 5 shows all metadata kept by the system. Following the table there is a description
of the columns and the values they might contain.

20 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Data Valid Values Source Update at Where | Output
Starting turn 0 through N Timing Board Readout Data Buffer | 5and 7
number
Total time >=(Timer Readout Calculated 5,6 and 7
within the cycle on Output
Number of 1 through 12 Internal Config | Readout Main S5and 6
detectors 12 or 24 Metadata
Number of turns | 1 through 8196 EchoTek, Readout Data Buffer | 10

Timing Board
User Request
Endianess 0 for little endian Internal Config | Static Main 7
else for non little endian Metadata
Header version | any Internal Config | Static Main 7
Metadata
Overall status 0 is ok Internal Readout Main 7
Metadata
Detector status 0 is ok EchoTek Turn Data Buffer | 3 and 4
BLM
Time stamp >=(Timer Readout, Data Buffer | 7,3 and 4
Channel Read
Data type Flash/Fast Abort Data Buffer Readout Data Buffer | 7
Slow Abort
Profile
Snapshot
Display
Turn By Turn
Injection TBT
Inection Closed Orbit
Trigger type periodic Turn Main 7
TCLK Metadata
Data source Beam Internal Config | Turn Data Buffer | 7
Calibration
SW Diagnostics
HW Diagnostics
Particle type Proton Turn Data Buffer | 7
Pbar
Bunch type Coalesced V:COALP Turn Data Buffer | 7
Uncoalesced V:COALA
Scaled data Scaled User Request Readout Calculated 7
Raw on Output
Machine state 1-24 V:CLDRST Turn Main 13
Metadata
Helix state V:HELIX Turn Data Buffer | 13
Proton bunches V:PBKTC Turn Data Buffer | 13
Pbar bunches V:ABKTC Turn Data Buffer | 13
EchoTek config | Turn By Turn Internal Config | Mode Change | Data Buffer
Closed Orbit
Calibration
Diagnostic
EchoTek status | 0is ok EchoTek Board Read Data Buffer | 5and 10
BPM state To be defined Internal state To be defined | Main 13
Metadata
Table 5 - System metadata
21 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Source: defines where data comes from
EchoTek: data is retrieved from the EchoTek board(s)
BLM: data is retrieved from the BLM chassis
Timing Board: data retrieved from the Timing Board
Timer: internal timer that is reset on a TCLK to be defined
User Request: data comes with the ACNET request
State Device: data is updated from a state device change (e.g. V:CLDRST)
Internal Config: data is kept internally by the syste
Data Buffer: data is within a data buffer (e.g. BPM Fast Abort Buffer)

Update at: defines when data is updated
Turn: data is updated every turn or every time EchoTeks and BLMs are read
Readout: data is update/calculated when processing online request
Board Read: data is updated when an EchoTek board is read
Mode Change: data is updated when there is a mode change
Channel Read: data is updated when reading channel (equivalent to Board Read)
Static: data does not change during normal operation

Where: defines where the data is kept internally
Data Buffer: data kept within the data buffer and is unique for every entry (turn)
Calculated On Output: data is calculated at online readout request
Main Metadata: data is kept by the system main metadata structure

Output: define what returning structures contain the metadata (doc #860 section 4.2 —
Data Structures (Output Data)):

ID Structure Contains
0 BPM TIME -

1 TRIGGER INFO -

2 TEVATRON BPM TBT TURN -

3 | TEVATRON BPM TIME SLICE VALUE -

4 | TEVATRON BLM TIME SLICE VALUE -

5 | TEVATRON BPM FRAME DATA 0 and 13

6 | TEVATRON BLM FRAME DATA 0

7 TEVATRON BPM HEADER 0and 1

8 | TEVATRON BLM DATA 6 and 7

9 | TEVATRON BPM ORBIT DATA 5and 7

10 | TEVATRON BPM TBT DATA 2,7 and 13
11 | TEVATRON BPM TIME SLICE DATA 3,7 and 13
12 | TEVATRON BLM TIME SLICE DATA 4,7 and 13
13 | TEVATRON BPM STATE DATA -

Table 6 - Output data structures

22 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.6 Tevatron BPM State Diagram

The possible states for the front-end system are displayed in Figure 4. The upper part of
the picture depicts the states assumed by the control task, while the lower section
contains state diagrams for the data acquisition tasks. Additionally, other states shown in
the middle section define states and transitions traversed by the MOOC task running
BPM code through its callbacks.

The system’s default mode of operation is ClosedOrbit, and it gets to that default state
during initialization, passing through the states ChangeEchoTekMode and
ChangeTimingMode. Depending on events received while at ClosedOrbit, the system
enters other modes, such as Diagnostics, Calibration, TurnByTurn and Alarm.

Control Task
|enable clozed orbit]

—}[L"-u-.gu Timing Config
[0t diagnastics]
[enable calibeation]
H [candigure timing) [enable ThT]
i (Clnnqr Configuratian)—
h [disgrostics dans| 7 N

H d 1 Diagnostics

L s

|calibration done]

-
1 Calibration ! =
. S

H |change system cordiguration] when: [V: E;;;"E,E fﬁ ‘IIICLK ol

H | calibration || 1 A P
| d 1 achatek dons g
(Clu-.l-dtlrh.: J =24 Chamge EchaTek Mode (dchotsk dons] ('Iurr.?h;l =
| H e -
fena] -
[stan]
[system boots] -
. ! > Initialize)
[fram any state] - + [to any state] [sparwn DA tasks] [MOOC request]
—;ﬂt Marss J—> §E \
. - - - -
(Uu".er Readout J [w.ul Ruquest) ;‘.é
: —'—’ “—rT\‘—’ —
i Fast Abort Task i Turn By Turn Task
\ : y . W4
® () S P Ao) J
N i - [data 1ake] BLM Task [stop] Ve . ‘-]
A N
Initsal

lize)‘ l/
[stop) . h.ie ‘-1 |’ et AP [take data)
- (J e o/

e L e -

Caher tacks, e.g. profle and displays,
are not shown in the diagram. Theie

state diagram is the same a3 any
| DA 1otk

T

[end]

Figure 4 - Tevatron BPM state diagram

23 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Figure 4 shows only four data acquisition tasks. However the system contains more tasks.
Their state diagrams are similar, therefore not repeated in the picture. Notice that the
states for the data acquisition tasks are the same. The difference between the tasks is
located in the internal state diagram defined for the state active. Figure 5 describes the
internal states for an active data acquisition task. The difference tasks is in the type of
event it waits in order to perform data acquisition. For example, the turn-by-turn task
waits on an interrupt from the timing board while the BPM profile task waits for the
TCLK $75.

[take data]

[stop]
Wait Event

[event received
TCLK, 2ms, 1sec] [data stored]

[error] when' [data read]

Generate Alarm Ferforrn DAG Save Data

[errar]

Figure S - Data acquisition task state diagram

3.7 Class Diagrams

This section describes the static structure of the system. The complete class diagram is
available in the appendix. We broke down the main diagram into pieces that handle
specific parts of the system. Every piece is described below, each one contains a part of
the full class diagram. Classes painted in gray are specific to the Tevatron BPM system.
Remaining classes are part of the generic framework. Class names throughout the text are
written in italic.

3.7.1 Tasks

The system has a certain number of independent processes; each one has a specific job.
The tasks in the system are all subclasses of a VxWorks task wrapper (Class Task). The
wrapper contains basic methods and attributes that represent a task. Figure 6 contains the
task classes in the system. The upper class represents the wrapper.

24 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Task

Hd : int
Fpriarity o int
+suspend)
+resurmel)
+run()
+new()

ControlTask DataAcyuisitionTask AlarmTask
+new(in source : DataSource, in buffer : DataBuffer) +dispatchAlarm() © int
+readout() +getAlarmQueue() © Queus
+setSource(in source : DataSource) +eleatAlarm() ©int
+setBuffer(in buffer : DataBuffer) +processAlarmi) ©int

i

TBPMControlTask | [TBPMFastAbortTask | [TBPMTurnByTurnTask | (TBLMFastAbortTask | |[TBPMAlarmTask

+setDone() : int

il

[TBPMInjectionTurnByTurnTask

Figure 6 - Class diagram for tasks in the system

The system is overseen by a ControlTask, which is responsible for initializing most of the
system, configure hardware (EchoTek boards, BLMs, timing module, calibration and
diagnostics hardware), switching acquisition modes, control other tasks in the system and
keep track of the overall state.

The DataAcquisitionTask represents the tasks that are responsible for acquiring data and
storing them in internal buffers. There can be several DataAcquisitionTask subclasses,
each one has a different acquisition method, can read data from different sources and
store them in different destinations. Examples are TBLMFastAbortTask,
TBPMFastAbortTask and TurnByTurnTask.

The AlarmTask handles any alarms generated in the system. It is its responsibility to
check the system alarm queue and decide whether to put the system in an alarm state and
send an alarm to the outside world.

3.7.2 Controls

The main class in the system is Control. It is however contained by the BPM class. The
class BPM makes a few assumptions about the system, and has common code for BPM
systems in general. A more specialized class (TBPM) has specific implementation for the
Tevatron BPM system. It contains objects of the classes TimingSystem, EchoTekPool
(EchoTek) and TBLM, which are the hardware present in the system. Additional hardware
classes may not be shown in the diagram on Figure 7.

25 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

DiagnosticSystem CalibrationSystem
Hnitialize() : int Hnitialized) : int
+sethode]) int +sethlode() : int
+changeConfiguration() : int +changeConiiguration()
TBPMDiagnosticsSystem Lﬁ
[TBPMCalibrationSystem
! BPM
contml +etart() ;- int 1
#state © int 1
+changebdode(in mode : int) : int ’—Z'A
+start() :int —
+setdlarms() : int TBPM EchoTekPool TimingSystem
+ereateDatascquisitionTasks() @ int o #numBoards | int
tereateTriggers() : int HindBoards() ; int +sethlode(in made : int) - int
+registerTriggers() : int 11 +rew() ’ +new)
+setStatefin state ; int) © int +initialize() : int
+createBuffers() © int 1
+HnitHardware() : int é
+stateChangelin variable : int, in newhalue @ int) @ int 24
+registerdlarmGenerators() © int TBPMTimingSystemn
+oreatedlarmTask() it TBLM EchoTek g3yst
+inithetadatal) : int
+setiodelin mode : int)
HoadFilters()
Hnitialize()

TBPMControl

Figure 7 - Main control classes

The BPM class contains the entry point of the system. It is responsible for starting the
ControlTask, which will in turn start the rest of the system.

3.7.3 Events

The system is composed of tasks and queues. The information flowing through the
queues into the tasks are events. Event is a simple structure which has the most basic
information about an event.

Events are classified by their field type. Based on the type of the event a specific action is
taken. For example, when a TCLK $75 is received by the interrupt handler, it puts in the
queue of the BPM profile task an event structure whose type indicates that a TCLK $75
has occured.

Similarly other types of events can be defined by using distinct values for the type field.
It can define distinct types of alarms for instance. Additionally, the structure contains a
void pointer (called payload), which can be used for passing additional information
within the event. Taking the same example, the payload can have additional information
about the alarm being generated.

26 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

EventListener «structures EventGenerator
Event #delay : int
feventQDueue ; Queue Fype int -generate v i i
+oeiEventh T Evert i .t . +broadcast(in event : Event, in delay : int)
+ge VenE(ln et"‘?” : \fte.né i N 'mei a_m.pt' ang +addiin listener : EventListener) : int
process. -ven (in evert - Event) -listen E”Dn L |n. . +setEnabled(in enabled : bool)
+isten() : int +* payload : vaid

+rermaove(in listener : EventListener) © int
+start() :int

+iisten(in tirmeout . int] @ int

Figure 8 — Handling events in the system

An Event is generated by an EventGenerator. The EventGenerator has a list of
EventListeners, to which an event is broadcasted after being generated. EventListeners
can be dinamically added or removed from the list. The EventListener receives an event
in its eventQueue. The Event is removed from the queue by processEvent ().

3.7.4 Event Listeners and Generators

Events can be generated and received by any entity in the system. Figure 9 shows the
classes that currently generate events, while Figure 10 shows classes able to receive
events. EventListeners are:

e (ControlTask: receives requests and events.

EventGenerators are:

o StateChangeEventGenerator: generate an event signaling a state device change;
o InterruptEventGenerator: generic event generator based on interrupts;

o TCLKGenerator: generate TCLK event on interrupts;

o TimeEventGenerator: generate an event on every tick of a timer.
e Control: generates alarms for the alarm task and events for data acquisition tasks.

EventListeners and EventGenerators:

o AlarmTask: receives alarm events from other tasks in the system; and generates
events sent to the ControlTask to inform about the current alarm situation;

e DataAcquisitionTask: receive events signaling the data acquisition process; may
generate events to other DataAcquisitionTasks.

27 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

EventGenerator |

#delay : int

+add(in listener : EventListener) : int
+remavelin listenar : EventListenar) : int
+start() : int

+hroadcastiin event : Event, in delay : int)
+setEnabled(in enabled : bool)

=~

AlarmTask ‘ |SlateChangeEventGeneramr‘ InterruptPventGenerator Control
‘ | state - int

+dispatchAlarmi) © int ‘ | +atart() - int]]
+processAlami) © int :gztaAngﬂ;nhfsge(I‘:tmnde sint) © int
+eleardlarm() : int .
e, e oAk i

‘TCLKEven(Generalur| | TimeEventGenerator +createDataAcquisitionTasks() © int
e - - + teTr cint
T — e e,
| ‘ ‘*39”"“9“*'3‘0“ intereal : int) HregisterdlarmGenerators() ; int
+readout() +initHardware() : int
+setSourcelin source : DataSource) [+inithtadatal] : int))
+setBuffer(in buffer : DataBuffar) +state Change(in variable © int, in newMalue @ int) : int
+new(in source © DataSource, in buffer : DataBuffar) +setState(in state : int) @ int

Figure 9 - Event generators

Eventlistener

F#eventueue : Clueue
+getEventiin event : Event)
+processEvent(in event © Event)
+Histen() : int

+Histenfin tirmeout © int) © int

~

ControlTask AlarmTask DataAcquisitionTask
+dispatchAlarm() ©int +readout()
+oetAlarmCueuel) © Queus +setSource(in source | DataSource)
+cleardlarmi) © int +setBuffer(in buffer : DataBuffer)
+processAlarmi) @ int +new(in source © DataSource, in buffer © DataBuffer)

Figure 10 - Event listeners

3.7.5 Data

During the data acquisition process the DataAcquisitionTasks perform reads from a
DataSource (EchoTek or BLM boards) and save the result to an internal DataBuffer. A
DataSource defines a generic class for reading out DataEntries. There can be several
types of DataSource. For the Tevatron BPM system three of them are defined: EchoTek,
BLM and DataBuffer (see Figure 11). This means that data can be retrieved either from
the EchoTek boards, BLM boards or from an internal buffer (e.g. a task can feed the slow
abort buffer with data from the fast abort buffer).

The destination of data read by the DataAcquisitionTask is a DataBuffer. It has
knowledge of the Metadata used to tag the data, such as beam type, accelerator state and
system status. All data entries are organized as DataEntries. The DataEntry can vary
depending on the type of measurement.

28 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

DataSource

+writeTalin entry © DataEntry) @ int

PaN

DataBuffer EchoTek TBLM
#huffer : DataEntry
Hsize : |n.t_ +sethodelin mode : int)
#:urre.nt_ int +oadFilters()
next : int +nitialize()
+writel) - int
+next() : DataEntry X —
+read() : DataEntry
+peekiin position : int) : DataEntry 1
+clear() : int DataEntry estructures gstructures J
+HsFull() « int) e E—— TBPMP ositi TBPMChanne|
+readD9neO s int ctatus - inF;. 9 #oroton © float -i : shart
Hock() : int — - #nhar : float -o : short
+unlock() : int +oopy(in entry © DataBEntry) : int -

: ? | 1 1
Clrcular.Buffer TBLMData TBPMData 1 1
#hafad.: int #machineState © int [triggerType : int
il - int WdataSource : int astructurey

hunchType @ int EchoTekTurnData
helixState : int [p—————tstatus int
fpratonBunches - int | 4 4o HurnMumber : int
gstructures fpbarBunches : int
TBLMChannel fmachineState : int
+Hoss : float
+status @ int

Figure 11 - Reading and saving data

The DataBuffers have data stored in a format that may be different from the format sent
to the end user through MOOC by invoking the BufferReadout class (Figure 12). Data is
formated according to a Packer (Figure 12). Depending on the data type and on the user

request a specific Packer is used (e.g. TBPMClosedOrbitPacker and
TBPMTurnByTurnPacker).

BufferReadout Packer
#headerversoin © int
+getDatafin bufferSource © int, in format @ int, in numElements © int) : char fendianess : int
+yetFTPDatalin dataType @ int) : float +packiin buffer : DataBuffer, in begin : int, in end @ int) : char

+isAligned(in address : char) : bool

Z‘X 'TBPMClosedOrhitPacker
TBEPMBufferReadout |

TBPMTurnByTurnPacker

TEPMPacker

Figure 12 - Buffer readout related classes

29 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.7.6 Alarms

The classes responsible for handling and generating alarms are shown on Figure 13. An
alarm event is generated by an AlarmGenerator. The generators in the system are the
following: DataAcquisitionTask and Control.

The AlarmTask is responsible for receiving Alarms generated by the AlarmGenerators. It
declares an alarm state depending on the alarm received.

AlarmTask mstéucture»
vent
_receive l AlarmGenerator
Fiype :int
+dispatchalarmi) - int L Horianity : int FalarmQueue : Queue
+getAlarmQuensl) © Queue imestamp : int +generateAlarm()
+clearAlarm() - int Fpayload : void -generate +setAlarmGueue(in gueue : Queue)
+processAlarmi) © int 4&
Control DataAcquisitionTask
state © int
+changehode(in mode @ int) :int +readout()
+start() © int +setSource(in source : DataSource)
+setAlarms() ©int +setBuffer(in buffer : DataBuffer)
+createDatafcquisitionTasks() © int +new(in source : DataSource, in buffer : DataBuffer)

+createTriggers() © int

+registerTriggers() : int

+=etState(in state : int) : int

+oreateBuffers() © int

+initHardware() : int

+stateChange(in variable © int, in newAalue : int) @ int
+registerAlarmGeneratars() : int
+ocreatedlarmTask) : int

+inithdetadata() : int

Figure 13 - Alarm classes

3.8 Timing Diagrams

This section contains timing diagrams illustrating the behavior of the several components
of the system during data acquisition operation. The default mode of operation of the
BPM front-end system is the closed orbit mode. In this mode, the EchoTek boards are
readout on every 2 milliseconds. All EchoTek boards present in the system are expected
to be read out during this 2 milliseconds interval. Figure 14 shows the components
involved in the closed orbit mode, and at what time they are expected to be run or be
accessed. The 2 millisecond interrupt enables the BPM fast abort task to take a
measurement, which accesses the EchoTek cards by reading their random access memory
at the location where closed orbit measurements are stored. While reading the boards, the
task also needs to access the fast abort buffer, where the data will be stored in the front-
end side. The amount of time to access data from EchoTek boards is expected to take
most of the processing time of the BPM fast abort task. The task will also have to acquire
the lock for the fast abort buffer, in order to avoid access to the data while it is being
written. This lock must be configured to allow priority inversion, such that if a user is
accessing the buffer, the processor will bump its priority in order to allow the BPM fast
abort task to gain the buffer control.

30 6/23/04

BPM Fast Abort Buffer Access

BLM Fast Abort Buffer Access

BPM Slow Abort Buffer Access

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

2 ms Interrupt §__| _|
BPM Fast Abort Task; | L | I s—
EchoTek Readout i__l—li_l—l I—l—

[}
Fast Abort Buffer Access]I_

2ms 4 ms 6 ms 8 ms

Figure 14 - Timing diagram for the BPM fast abort DAQ

The system contains other data acquisition tasks running besides the BPM fast abort task.
Figure 15 shows the situation where other data acquisition tasks run concurrently to the
fast abort task. In addition, it is considered that the 2 millisecond interrupt generates the
event at 1 second which enables the BPM slow abort task. After the fast abort task is
done reading out the EchoTek boards the BLM fast abort task is allowed to run. In its
turn it reads out the BLM chassis and save data to the BLM fast abort buffer. The
diagram shows the BLM fast abort task being interrupted by another cycle of the BPM
fast abort task. The BLM fast abort task will resume the readout after the BPM fast abort
has finished its new cycle. Still before a new 2 millisecond event the processor is able to
run other data acquisition tasks. The picture shows the BPM slow abort task being
scheduled, and it accesses the BPM fast abort buffer and the BPM slow abort buffers.
Similarly, other tasks such as the BPM display or BLM display. Those tasks would use
the remaining time between the BPM fast abort readout cycles.

2 ms Interrupt

[]]]
= r

[
[

BPM Fast Abort Task

EchoTek Readout

BLM Fast Abort Task

BLM Readout

BPM Slow Abort Task

[] []
[] []

1 sec +2 ms +4 ms +6 ms

o f{}Tf

Figure 15 - Timing diagram for BPM fast and slow abort DAQ and BLM fast abort DAQ

31 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Figure 16 describes the process of making a turn-by-turn measurement. For entering the
turn-by-turn mode, the system must receive TCLK $77, which is received by the control
task. The control task is responsible for disabling the closed orbit mode and for arming
the turn-by-turn task. While in turn-by-turn mode, tasks that read closed orbit
measurements (either from the EchoTek boards or from the BPM fast abort buffer) must
be stopped. The BLM fast abort task can still be allowed to run in turn-by-turn mode
because it does not depend on the EchoTek boards.

TCLK $77

=

Control Task

TBT Done Interrupt

2 ms Interrupt

BLM Fast Abort Task

BPM Fast Abort Task

BPM Slow Abort Task

Turn By Turn Task

EchoTek Readout

]l

Turn By Turn Buffer Access

[[

2ms 1 sec 1sec+ 1sec+ 1sec+
2ms 4 ms 6 ms

EchoTek Configuration

Figure 16 - Timing diagram for a turn-by-turn measurement

After receiving the turn-by-turn done interrupt from the timing board, the turn-by-turn
task performs the EchoTeks readout and saves data into the turn-by-turn buffer. The
control task is signaled that the measurement is complete, allowing it to reconfigure the
EchoTek boards and resume closed orbit related tasks.

The order of execution of data acquisition tasks is dictated by the priority it has. Table 7
shows the expected priorities of the different tasks in the BPM system. It is considered

32 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

that smaller numbers represent higher priorities, i.e. the control task has the highest
priority while the BLM display task has the lower.

Task Priority
Control task 0
Turn by turn task
Injection turn by turn task
BPM fast abort task
Alarm task
BLM fast abort task
BPM slow abort task
BPM profile task
BPM display task
BLM display task

AN AN N | ([WN|—|—

Table 7- Task priorities

3.9 Activity Diagrams

This section contains diagrams showing the work flow of different tasks in the system.
Figure 17 contains the basic flow for the ControlTask. It basically has to take care of the
initialization of the system and enter a closed loop waiting for commands from its input
queue. These commands are requests from MOOC and other events generated within the
system.

After receiving a request from its input queue, the ControlTask starts to process the it.
This is represented by the ProcessRequest state, in which all types of input requests are
handled. As an alternative for simple requests, the MOOC callback invokes directly the
code for processing the request.

33 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

StantBPM

. StartControlTask

MOOC . " ControlTask

P CreateReadoutTasks
MOOC Request) : WaitF orCarmmand

CreateTriggers
ProcessRequest k=

RegisterTriggers
CreateAlarmTask :
RegisterAlarmCueue :

ProcessRequest

Figure 17 - ControlTask flow

Similarly, the DataAcquisitionTasks run in a closed loop waiting for Events. Upon the
reception of an Event, the DataAcquisitionTask begins the data acquisition process from
its DataSource, which can be hardware or a software entity. The DataAcquisitionTasks
are independent of each other but may share some source code (e.g. TurnByTurn and
InjectionThT in the picture).

Figure 18 depicts several DataAcquisitionTasks, but the functionality of some can be
combined into only one task in the final implementation. For example, the FastAbort may
also be responsible for the tasks performed by the SlowAbort. It is an implementation
choice, and the final decision may be driven by the performance of the options.

The framework also allows a DataAcquisitionTask to generate Events to another
DataAcquisitionTask. Suppose that there is an InjectionTbTClosedOrbit task. It would
receive a trigger from the InjectionThT task informing it that new data is in the internal
buffer, and a closed orbit can be calculated.

The process of retrieving data from internal buffers is shown in Figure 19. A request
comming from MOOC enters the callback, which in turn calls methods from the
BufferReadout class. The class provide methods for retrieving the data from the internal
buffers and a Packer is used to format the data according to the online applications (doc
#860).

34 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

FagtAbort = SlowAbot | Profle | Display | InjetionTbT TumByTum BI]M
i ; | i b W : " i
(WA“THW}’\— i (\.Nmunnar_)_ (Waﬂliggar]%‘ G"Hﬂﬁluw)f G\’aﬂﬁluser Je 6,,.,'1,@9,,,}(\ i

e S e §
):Fla'rrrgqn:\)'
PrefiiTrigger) | i !
¢ ;) |

.,

I SEa—.

)

T T T B e e

Sinninninn RN

A
1y,
U
i

Figure 18 - DataAcquisitionTasks flow

? The tasks depicted in the picture (swim lanes) do not necessarily represent how the system will be
implemented. Functionality of tasks can be combined (e.g. the InjectionTbT and TurnByTurn could be one
task).

35 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

= RETDAT/FTP

FTR BLMDisplay BPMF astAhort

BLMFastibort BPMSIowAhart

oy —
Gy

Turn By Turn

Injection Turn By Tum

PackData

Figure 19 - BufferReadoutTask flow

3.10 Sequence Diagrams

This section describes common software scenarios for the front-end Tevatron software.
The diagrams contain objects of the classes previously discussed and show interactions
between them throughout the course of a given scenario. The sequences shown do not
correspond exactly to the implementation, but they serve as a guide to understand how
objects and classes are related to each other in a dynamic environment. The flow of
events starts at the top of the diagram and go downwards, following the string of method
calls and returns.

3.10.1 Initialization

Figure 20 shows how the objects in the system are first created and what are the expected
operations. The entry point is the BPM object, which will create the ControlTask. The
ControlTask delegates the actual work to the Control class, which is responsible for
creating most of the objects within the system. It must instantiate the
DataAcquisitionTasks, create the AlarmTask, EventGenerators among other initialization
procedures.

36 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

m
m
=

new()

new() controlTask

i ne() control

1
|
AB? initHardwarel)

inithetadatal)

? createBuffers()

createDatacquisitionTasks()

[

? createAlarmTaski)
createTriggers()
0 E?

!

Figure 20 — Initialization sequence

The following pictures describe in more details every step the Control class goes through
when being initialized. Its first task is to configure the hardware system. This is depicted
in Figure 21. The EchoTek boards must be found and initialized (crates have different
number of EchoTek boards), as well as the timing, calibration and diagnostics hardware.

37 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Figure 21 - Hardware initialization sequence

Following the hardware initialization, the system must get information about the initial
state of its metadata (Figure 22). Most metadata is controlled by the system itself, such as
the state and state of the EchoTek cards. Remaining metadata comes from outside the
system and must be retrieved at initialization. An example of external metadata is the
current Tevatron state, given by the ACNET variable V:CLDRST.

conteg!

inMetadats) |
i

L] ieeladila
:I‘ > guiStateDic)
newl) L
fmmmmeccnmaaad -

Figure 22 - Metadata initialization sequence

Figure 23 shows the creation of the several data buffers in the system. They don’t need to
be created at a particular order, but is at this point that their size is defined. During its
creation the buffer allocates the memory that will hold the data read from the EchoTeks
and the BLMs.

38 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

oo

createBufers |

| eawg | bumE
el | Jnnmslm:ﬂumr
| newd) 1 TumByTumBufer
1 nve]] E H J\-- Ty Tyrmd
] : newl) Jlj]]:l’r'{l-ﬁig' |
i (=] 1 ; thnlllmr.ﬁuﬂ:l_l
e, 5 ;] ;

Figure 23 - Buffer initialization sequence

After creating the buffers, the data acquisition tasks are created (Figure 24). The tasks
receive the data source and data buffers that will be used.

=1

ereateDatatequisitionTasks()
T new(echotek, bpmE sstAbartButer) bpmF astAbod Tagk
new(bprF attAbonBuffar, bpmSlowAbonBufiar)
neswiichotek, tumBy TumBuffir) J tum By TumnTask]

newiecholek, ingclionThTBufler)

irppgleonTh Tagk.

mwibpmF astAbart Bulier, bpmProfileBuffer) _| bomProfileTask

riwlbpimi L bpmDesplay B brnDisplig Tisk]
miEwibim, bimF aetAbonBuffer) biraF gztAbor Tagk
néw(bImF asiaborBluffar, bimDisplayBluffer) I 1ayT;

createDatafcquistionTasks()
N)

Figure 24 - Data acquisition tasks initialization sequence

Next step is the initialization the alarm scheme by instantiating the alarm task and
informing other tasks in the system about the alarm queue. Alarms generated in the
system are posted to the alarm queue, which is constantly read by the alarm task.

boerEaniAbenTask |l-;m5.~m=.~1nh:.\ sy TemTusk. | msctiza Tl Taak |r:1.—J"uénTm |hp.—.£=|=slnTnl. |:I|||.=nlAhl-.‘.Tn.‘. bimDosptayTast,
cosataMamTask) | H T T 7
i H
new) alamTask | i
' '
= mgstieAlsmGrearaton ! |
' 1 '
o i i
Gersamues H |
T ' ' !
——— satAlmCeue{alamseue) : H !
— : ! i
[T : : !
settlamOuse(samOuse) ! | H
SAamOuR s Oyrer) H !
- H !
e ————— '[| !
sethlamOsutalamooe) | '[l i
. i . ——
etAlwmOususalamOusue) :
OO 1 e ']]
: rT T r——"] H ¥ ']]
v i T selemOueuamOues) | T '] | H
! H : H
¢ ..-.e.u....—n.».f_l : | !] |
o : ! 1 ! i

Figure 25 - Alarm initialization sequence

39 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Following the alarm initialization, the event generators are created. They are basically
interrupt handlers that will create events when called. The events are then placed into the
input queues of the listeners. Figure 26 also shows what are the listeners for each event
generator.

teTrggers() ;
") ;)
nerw) ZmsEeniGanarsio:
add{bpenF astahnn Tagk) H
now) [1secEveniGengestar.
wddbpmSlowAbo Tatk) '
. N
44154 EvernGensrater) [u
debireif astAbon >'-]:' ;
i) H LlkEwnGengraon
add{controlTagk) :
addbpmiProfieTask) !
add{epenbisplayTask) 1"
| T
(bl Display Task il 1
: i tumByTumnErenGenarator
addfejnctionTumByTumTask) :
tatHsedar] 13
: : L !
instaltandlan] ' H 1 R
T installiandlor) | !

ervaleTriggers()

Figure 26 - Event generators initialization sequence

At last in the initialization sequence, the tasks are allowed to start and the system enters
in the normal mode of operation, which is enabled through changeMode () (Figure 27).

[e |'.'.-:-:I:!,-,_._] | s]Ln |Mﬁ|. ':-.p.-.a:.‘-.h'[.m;,-.l...-,.-_ ".,,h ":..,;-w.:,.,\-.".-.--:.\,.,.u,-..":.,..\-.u-.‘:.\,'[n-z.-.,.,.u,-.;"..,.u.‘.,.‘-]

way)
|

g

Y,

stang)

i

g

Figure 27 - Tasks initialization

40 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.10.2 Mode Change

The system has the ability to change modes of operation when running. The most
common modes are closed orbit and turn-by-turn®. The closed orbit mode is the default
mode of operation. Turn-by-turn mode is enabled on user request or on a programmed
TCLK event. Figure 28 shows the sequence of operations when changing from the
default mode to the turn-by-turn mode.

control echotek timingSyetem | | bpmFastAbortTask | | turnByTumTask
TCLK §77() \ i :
| | ! H
broadcast(TCLK §77, 0) I I ! i
\ | !
1 1 ! H
getEvent(TCLK §77) } ! ! ! I
i i ! H
] ' . | :
i i 1 '
I I
processEvent(TCLK §77) 1 | | ! !
1 1 |
I
i
changeMode(TurnByTurn) 1 1 ! !
i
1 I
getEvent(STOP) | ; H
1 N \
setMode(TurnByTurm) ' U !
listen() L T '
sethlode(TumByTurn) | I_—| | !
i
getEvent{START) ! i
|
changehiode() : H | L_I
,,,,,,,,,,,,,,,,,, H
' I |
1 ! ! i
! 1
I
I

Figure 28 - Changing modes

In the particular case depicted on Figure 28, the mode change is triggered by the TCLK
$77. The event will be passed down to the controlTask which calls control. In the
changeMode method the mode of operation of the EchoTek boards are changed (by
loading a different configuration) and setting the timing system (7SG) to the turn-by-turn
mode. It is also its job to suspend and resume DataAcquisitionTasks according to the
mode of operation.

The action of suspending and resuming the DataAcquisitionTasks is accomplished by
sending control events via their input trigger queue. When a DataAcquisitionTask
receives a STOP command it will ignore any events from that moment on. Upon the
reception of a START command, the DataAcquisitionTask starts processing events again.

Upon the completion of a turn-by-turn measurement, the system must return to its default
mode closed orbit. The sequence illustrated in Figure 29 shows the steps taken by the
system when returning to its default mode of operation.

3 There can be a turn-by-turn request when the system is already in turn-by-turn mode. In this case, the
system must halt the current measurement and restart it according to the new specification

41 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

turnByTumTask controlGueue controTask

control

T
1 | |
astructuras ! !

new() doneTBT | |

I I

|

I

getEvent{donaTBT)

setDone()

} send(doneTET)

setDone()

receive(doneTET) 1

getType(]

i changeMode(TURN_BY_TURM)
| listen()

| changehode()
I

I

|

I

|

|

Ny

|:j

Figure 29 - Return to close orbit mode

3.10.3 Buffer Readout

Buffer readout operations follow the sequence defined in Figure 30. A user request comes
through the MOOC framework, which invokes the BufferReadout class. The
bufferReadout selects the data buffer according to the request specification and calls a
Packer for arranging the data in the format expected by the online user. Depending on the
user request, a different packer can be used (e.g. closed orbit or turn-by-turn).

MOOC packer fastAbortBuffer bufferReadout
| 1
| 1

regquestl
|

getDalaibpmFastAbotBullerlD, TEVATRON BPM_FRAME_DATA, N)
‘ :

[l T
| pack{bpmFastAbortBufier, FIRST_ENTRY, LAST_ENTRY)

lockn) |
1
1
read] H Avaid data to
be updated while
packing it
unlock() 1
i pack()
I : _____________________ %'
| getDatal)
T______________‘ ________________ : _______________________ T
1
1
1

[
L replyl !
- |

Figure 30 - Fast abort buffer readout

3.10.4 Alarms

All tasks in the system are capable of generating alarms. Figure 31 shows the sequence of
an alarm generation. A task in the system creates an alarm and it is sent to the

42 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

alarmQueue, which is monitored by the AlarmTask. This task decides the criticality of
the alarm and send out a MOOC alarm and informs the ControlTask that the system is in
an alarm state.

Generats BPM Sick or BPM Dead alamn L

0 \
based on the 1ype of alamm recened If the The alarm state is cleared by the control [aSk.[-
m peigimal ok, the alarm when it sends @ chear alarm £ the sk queu
nay net be dta it
bomFastabor Tagk Sl slarmTask ‘ | MOOE | l cantrolTask ‘ controlQusue
estructures : : T
i niew) ™ i H |
: g i P/ ' i
T anlE i ! i
| aetEvent(alarm) ! \ / ' |
: L : !
| Vo send{alamn) -| / | I
. i N |) 1
7

i . H i
\ | E receiva{alam) :/ ! i
1]

i

||||||

—— setState(ALARM) |
- '

Figure 31 - Alarm generation

The alarm state can be cleared by the ControlTask or by the online user through sending a
clear message to the AlarmTask (see Figure 32).

coprolTagk
1
|-L\-.H_ closdlam() control

T —— i
s <structures
MD0E cliarAlannf) =" ’ i) .
- o
[:
] | :
J T 1
H |
i
i
I

slarmOueue

slarmTazk

'
i getEvera(event: Evert) ‘

'
GetType()

Figure 32 - Clearing an alarm

3.10.5 Events

Figure 33 shows a generic view of how an FEvent is handled in the system. The
EventGenerators create Events, which are sent to EventQueues owned by EventListeners.
An EventListener is usually a task and will receive events from its queue and process
them within the processEvent () method.

43 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

eventllueus eventlListener
evant() ! ! !
broadeast(event,) : ;
! I
estructures : |
new() event i !
» ! |
; getEvent(event) : ;
1
|

send(event)

receive(event)

processEvent (event: Event)

getTypel listent)

" N

1

Figure 33 - Event generation

A particular case of event handling is shown in Figure 34, where the generator is of the
type StateChangeEventGenerator, and the receiving side is the ControlTask.

stateChangeFventGeneratar controlQueue

controlTask control

i

I

i

! I

broadcast(stateChange, 0) ;
i

|

|

I

|

stateChangel)

yetEvent(stateChange)

i
1
i
i
1
i
1
i
i
‘ , :
1
1 send(stateChange) | ‘ !
1
i
i
1
i
1
i
i
1
i
1

| [receive(stateChangs) |

processEvent(stateChange)
a}haﬂge(\/ N, newalue)
J changeStateDevice VXX, new'alue)

changeStateDevice() M
stateChangel) }
|

stateChange()

T T
| |
| |
| |
| |
i i
| |
| |
| |
1 1 listen()
| |
| |
| |
| |
i i
| |
| |
i i
| |
| |
| |
i i

Figure 34 - State device change

3.10.6 Data Acquisition

The data acquisition process is similar to the event handling scheme on Figure 33. The
event in question is a 2 millisecond event, generated by the 2msEventGenerator. The
event is sent to the bpmFastAbortTask, which in turn will acquire data from the echoTek
and save it to the fastAbortBuffer. This process is illustrated in Figure 35.

44 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

; Im| I“" — . | |.m5m§ o
2eng intemupt]) | i

N sslnatuwer
newl) 2msEvent
———; braadzastEmsEveit, 0)

'/ f I '

[r getEvertmsEvent) :

2 mulkgecon: |

.\J
Figure 35 - Fast abort trigger generation

A similar diagram in Figure 36 is provided for the turn-by-turn case, where the
turnByTurnEventGenerator receives the interrupt from the timing board signaling data
ready, which is passed down to the turnByTurnTask, which carries out the data
acquisition.

tor] |m | iy T Task | schylek | enfy TuriSiufler I

fiming baard inteemga) + H) H | :
! <EIFUCIurES H
nawf) turnByTumDonsEwnt !
WEventumBy TumDonsEvent) 1 H
i : !
. 1 i
] | sund{lumByTumDoneEvent) 1 | !
T i
| recewellunByTumDoneEnent) | i
]] i
] ! gelFypel) i
1) ' /7 i
] / s readutl) i
' : —~ i

1 ' A

. . / .
{ i
III i

| wrileTo{dataEntry) 1 _
ksten() ﬁ
I|I wrtel
H
\ i

\ U
i

\ —— setDone()
Y =i
atu

Figure 36 - Turn by turn data acquisition

3.11Packages

The system is designed to provide a generic and flexible framework for BPM projects
including the Tevatron. For this purpose, the classes are divided in a generic BPM class
package and Tevatron BPM package.

45 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.11.1 Generic BPM classes (GBPM)

These are generic classes that form the BPM framework. These should make up a
running system with hooks for machine specific code. It contains classes that provide
data acquisition, control, configuration management, alarms and buffering. The following
classes are part of the GBPM package:

e BPM
e Task
o ControlTask
o DataAcquisitionTask
o AlarmTask
Control
Queue
Semaphore
EventGenerator
o StateChangeEventGenerator
o InterruptTriggerGenerator
o TCLKGenerator
o TimeTriggerGenerator
e AlarmGenerator
e FEvent

e DataSource
o DataBuffer
= CircularBuffer

Metadata
DataEntry

Packer
CalibrationSystem
TimingSystem
DiagnosticSystem
BufferReadout

3.11.2 Tevatron BPM classes (TBPM)

These are the classes that implement the specific BPM behavior for the Tevatron
machine. Code for specific hardware and Tevatron alarms must be implemented in these
classes. Table 8 lists the classes that belong to the TBPM package.

Superclass Subclasses
BPM TBPM
ControlTask TBPMControlTask
Control TBPMControl
DataAcquisitionTask TBPMClosedOrbitTask
TBPMTurnByTurnTask
TBPMInjectionTurnByTurnTask

46 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

TBLMFastAbortTask
AlarmTask TBPMAlarmTask
DataSource EchoTek
TimingSystem TBPMTimingSystem (TSG)
Metadata TBPMMetadata
Packer TBPMClosedOrbitPacker
TBPMTurnByTurnPacker
TBPMTimeSlicedPacker
TBLMPacker
TBLMTimeSlicedPacker
DataEntry TBPMData (EchoTekTurnData, TBPMPosition, TBPMChannel)
TBLMData (TBLMChannel)
BufferReadout TBPMBufferReadout

Table 8 - TBPM classes

3.11.2.1 TBPM Buffers

Even though the data source of position, intensition and loss data are only the EchoTek
boards and the BLM chassis, the system must keep several types of data in different
buffers. Some of these data may be the same, what makes them different is the event that
triggered its acquisition. According to AD document #903, these are the buffers that must
be implemented in the system:

BPM buffers:
e Fast Abort Buffer — circular (array)
Slow Abort Buffer — circular (array)
Fast Time Plot Buffer — circular for high readout rates
Profile Frame Buffer — FIFO (array)
Display Frame Buffer — FIFO (single entry)
Snapshot Buffer — FIFO (single entry)
Turn By Turn Buffer Buffer — FIFO (array)
Injection Turn By Turn Buffer — FIFO (array)
Injection Closed Orbit Buffer — FIFO (single entry)

BLM buffers:
e Fast Abort Buffer — circular (array)
e Display Buffer — FIFO (single entry)
e Fast Time Plot Buffer — circular for high readout rates

These buffers are realized in the system by the class DataBuffer. The Fast Time Plot
buffers are the only ones that do not have its own memory location. When handling a

FTP request the system will return the latest value(s) from the Fast Abort Buffer.

Data from the buffers are read by the BufferReadout class and organized by a Packer
according to the structures defined in AD document #860.

47 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

3.12Implementation

This section is a guideline for the implementation of the system. It is divided into two
parts: the first one contains the elements related to the generic BPM framework and the
second lists the components of the Tevatron system.

It is highly recommended that every class have a unit test associated to it. The tests
should call all methods from the classes and check the returning data and status.

3.12.1 Building The Generic Framework

Implementation of classes is independent, otherwise noted that there are requirements.
First level of elements can be implemented in parallel, while elements within (a — z)
usually require sequential implementation. Here is the list of implementation tasks:

1. Buffers

a. Implement DataSource
This is a generic class to provide means to get data. It can return data
points or data arrays. The returning data are of the generic type
DataEntry.

b. Implement subclass that generates a known pattern (e.g. TestDataSource)
We need a data source class capable of generating predefined patterns
for testing, debugging and to provide diagnostics.

c. Implement DataEntry
It is a generic data point, it does not define the type of data it will carry,
this should be defined in its subclasses. It contains minimum information
such as a time stamp and the status of the data.

d. Implement Subclass of DataEntry (e.g. TestDataEntry)

This would be a class for testing and debugging the code. Can contain a
simple integer as the data.

e. Implement DataBuffer
Generic class that allocates memory for containing DataEntries. Has
methods for controlling its contents and is able to return pointer to
elements within the array.

f. Implement Packer
Generic class that provides the method interface for packing data. This
will be used by the system when the user requests data. Data has to be
read from the internal buffer and repackaged into some format. The
subclasses of Packer will provide the appropriate algorithm for packing
the data according to the users request.

g. Implement subclass of Packer (e.g. TestPacker)

For completing the Test environment there is the need of a Packer for
our TestDataEntry. Should be a simple class that implements an
algorithm for packing TestDataEntry type of data. It will follow the
interface defined in the Packer class.

48 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

2. Wrappers
a. Implement Task
This is a VxWorks task wrapper. It will allow a class to be a task by
providing a run () method, which is called by start (). start () will
encapsulate the system call taskSpawn. The class also should take care
of operating system errors that may ocurr and should keep information
such as priority and task id as attributes.
b. Implement Queue
Wrapper for the VxWorks queues. Should take care of operating system
errors and keep information about its status. Should provide methods for
retrieving current status and statistics.
3. Events (requires 2b)
a. Implement Event
An Event is a generic container for any kind of event in the system. An
event can be a 2ms trigger generated by a timer; a TCLK just received,
an interrupt coming from the timing system.

b. Implement EventListener (requires 2b)
The EventListener is a class that has an input queue, through which it
receives Events. Subclasses of EventListener will be able to receive
Events. It also provides interfaces for handling the received events.

c. Implement EventGenerator
This class provides means to broadcast Events to EventListeners. It
contains a list of listeners, and when an event is generated it is passed to
the members of the list. The class provides calls for adding and
removing listeners.

d. Implement InterruptEventGenerator
Contains interface for install, enable and disable an interrupt handler.
The interrupt handler is a method within the class.

e. Implement TimeEventGenerator
Subclass of InterruptEventGenerator. Configures software timer to call
the interrupt handler.

f. Implement TCLKEventGenerator

Subclass of InterruptEventGenerator. Configures TCLK PMCUCD card
and handles its interrupts.
4. Alarms
a. Implement AlarmGenerator
Provides the ability to send events to the AlarmTask.
5. Control
a. Implement Control class
This class contains code for managing a generic data acquisition
environment. Provides calls for adding DataAcquisitionTasks and
buffers.
i. Implement Metadata
This class contains any generic metadata associated with the data
acquisition system. An example is the current status of the system.
6. Tasks (requires on 2a)

49 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

a. Implement ControlTask
b. Implement DataAcquisitionTask
The actual data acquisition work is performed by the
DataAcquisitionTask. Generically this task repeats the following
operation upon the reception of a trigger: read the DataSource, save
DataBuffer and wait for another Trigger. Specialized subclasses can
implement code for dealing with specific hardware. This class should
also be available to use in an actual system without adding any code, if
the DataSource and DataBuffers don’t require any special handling (e.g.
the BPMDisplayTask on Figure 2 may be only a DataAcquisitionTask
whose DataSource is the BPMFastAbortBuffer and whose DataBuffer is
a BPMDisplayBuffer).
c. Implement AlarmTask
This task receives internal Alarms, and decide if external alarms should
be generated.
7. Buffer Readout
a. Implement BufferReadout
This class handles user data requests. Data is read from internal buffers
and formatted according to a Packer before being sent to the user.
8. Hardware Support
a. Implement TimingSystem
Defines basic interface for a BPM timing system, does not have
implementation of specific timing system. Subclasses must define the
behavior of the timing system.
b. Implement CalibrationSystem
Defines basic interface for a BPM calibration system, does not have
actual implementation. Subclasses must define the behavior of the
calibration system.
c. Implement DiagnosticSystem
9. External Communication
Implementation of calls (set of classes and wrappers) that can be made from
ACNET/MOOC for data request, data acquisition specifications and control
requests.

At the end of the implementation of the generic framework it is expected to have a test
version of the system running, generating fake data, receiving comands and requests from
users.

3.12.2 Building Tevatron BPM Software

The implementation of all classes for the Tevatron specific system are independent. Any
requirement on input/output data can be fulfilled by using Test classes from the generic
framework. For example, it is not necessary to have the EchoTek class in place to
generate data, one can use the TestDataSource class for that purpose or implement a
TestEchoTek class which generates simulated data. The list of implementation tasks
follows:

50 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

1. BPM hardware
a. Implement EchoTek
Contains all EchoTek related code. Provides interface for configuring
the board, set diagnostics mode, enable debugging, etc.
b. Implement EchoTekPool
Represents a set of EchoTek objects. Has the ability to probe the VME
bus for boards and add them to the pool automatically. Provides access
to a single board and is able to send commands to all boards.
2. BLM hardware
a. Implement 7TBLM
Software representation of the BLM hardware, providing the interface
for reading and writing to BLM registers.
3. Timing system
a. Implement TBPMTimingSystem
Contains the implementation of the interfaces defined by the
TimingSystem class. This class is able to configure, diagnostic, enable
and disable the Tevatron BPM timing system.
4. Control
a. Implement TBPMControlTask
Extends the functionality of the ControlTask class by adding code for
dealing with specifics of the Tevatron BPM system. The
TBPMControlTask is responsible for creating the DataAcquisitionTasks
in the system, has the knowledge on how to proceed on mode changes
(when to configure the EchoTek cards and the timing system). Controls
the overall system status; is able to clear internal alarms; receive TCLK
triggers and forward them to the DataAcquisitionTasks; controls what
DataAcquisitionTasks are currently active (receiving triggers or ignoring
them).
5. Data
a. Implement TBLMData
Class containing a BLM data entry.
c. Implement TBPMData
Class containing a BPM data entry.
d. Implement TBPMChannel
Structure containing information about a single BPM channel.
e. Implement TBLMChannel
Structure containing information about a single BLM channel.
f. Implement TBPMPosition
Structure containing information about a single BPM position (proton
and pbar).
g. Implement TBPMClosedOrbitPacker
Implementation of the pack strategy for closed orbit measurements. This
class receives DataEntries from a DataBuffer and generates a structure
that is sent to the user in response to a request.
h. Implement TBPMTurnByTurnPacker

51 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Pack strategy for turn-by-turn measurements.

1. Implement TBPMTimeSlicedPacker
Pack strategy for time sliced closed orbit requests.

j. Implement TBLMPacker
Pack strategy for BLM requests.

k. Implement TBLMTimeSlicedPacker
Pack strategy for BLM time sliced requests.

6. Data acquisition

a. Implement TBPMClosedOrbitTask
This class has to deal directly with the EchoTek boards and the timing
system. It does not configure the EchoTek and timing boards (that is
done by the TBPMControlTask), only reads data or get interrupts from
them. Cannot use the generic DataAcquisition class for readout.

b. Implement TBPMTurnByTurnTask

This is a specialized class and like the TBPMClosedOrbitTask it has to
communicate with the EchoTek boards and the timing system.

c. Implement TBPMInjectionTurnByTurnTask

This is a specialization of the TBPMTurnByTurnTask. There are not
many additions to the code. In the implementation it is possible that a
subclass is not even necessary to implement this feature.

d. Implement other data acquisition tasks: The tasks shown in Figure 2 are
able to use the generic algorithm implemented in the DataAcquitisionTask
class. They basically will read data from an input buffer and save it to an
output buffer. With the exception of the TBLMFastAbortTask, which will
get input data from the BLM chassis.

7. Buffer Readout
a. Implement TBPMBufferReadout
Add functionality specific to the Tevatron BPM system (the generic
BufferReadout may be enough).
8. Alarms
a. Implement TBPMAlarmTask
Contains code for handling internal alarms and decide when to generate
external alarms. Can change the system state to ALARM, and is able to
receive clear alarm commands from the TBPMControlTask.

52 6/23/04

4.1 Class Diagram

4 Appendix

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

POOT 'S0 421 Aepsaupam

6/23/04

53

weibeiq sse|n o o g
W e
JIRIREL T L2
oy - 5504
W1 apIgeun v e 18 1|
31 watung egeel iy
™ L I 1ty
1 sna & "
cainiangs> apueaisu
. Kl —
¥ - TR [T
o praug] (eayf
s projiady
| — v_ — T Wt fageieg tﬂ:._;nﬂh L =] - Bzuhnu...i
ga.. | ey : Loty Buny - dusgsunp A_u W (e suagEy jeacus . -..._t —“ﬂ_.uh
* > 30, o
asanpnAEs 90|38 Aayer an.gou_u_n.ﬂ (00g - pereus ulpaeugiess] sawisuad- .“ﬁ.u.
' a1 : QRURORTRH I MUY C sasisy ulppes
[ERE (s Aejop u ' ks UNIE PE0IG
. u Qs wr ey
Sl ﬂih_nﬂm_uﬂdcmﬂy__.“ _ SONRIPURNINGAT
Knjugere - (awu AN
 agn i
T U [peenawien - mang v ineseAD - enines e (anaan © anash uisnsnguieeid sl L g,
¥ LM e [eangeien ©iang Crem pyrmiesaiaa Sf
R T T s (pasnogezeq sanes ujanrogies 1 anangy : SnanguAEH]
abys - i U U U B U k] . Aqugeien - epnn L Jropea oA ua ey
sugnjeseq
nopEayiagng L A_w 58 | uapsnbayEIeg
1 .
[as 7& l
- fhiagepn | L wo) dpass,
v (JeiEpeimyaiaed SR
B (e e
aepnu e s - (st pese S [
b (OTEAMI VI | IR bl (e (e saasty
L Osame v (gl auns [e — W DS
| i (sispngasesie) [Cpuadenes snsng - (Janerouieyisbe
= W[y A e W Aond] i (g e
= = Pt fpsaabiu iags | - Y
| "8 5 K
1oy AR IAL e Doy oo, 0+ (48RS DR I 0L Rin T AT URRTER el AE useny
[spes ubpciimns Lo M s 4
i (s (s s g agEs s
wajop3 e - {n apow uiapopebueyay Doz s o u:?A.__
ey - - e Snang) ; snangiasa]
Y lonues _ JAUAETNAAT
AN
Quaue]] t
[e] o (spaeogpups |]
i
100G - (1eya - 330.5pe ulpeubyse] [1 3 [eeLaenmaay
B pus U uBag Ul inoee] | s8gng wiyaed.) |
W s
w iosapgepro ' ol v [oaowida)
e [J
N
- [un - apows ?.:x. - G L -
[it4s ebessous inc)ams e Tems L] - Qamagaegiats (=
{imiga : aBeenews ujpusss (iads Quaus| o adkyyoenge
[3 Wi BRISBUR D L]
neng I = R 1 - edhg06Buye
h_v] :
[Dazgipuns] Qozyerss
[|

Figure 37 — Complete TBPM front-end software class diagram

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

5 Bibliography
[Cockburn] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

[Fowler] Martin Fowler, UML Distilled: A brief guide to the standard object modeling
language, Addison-Wesley, 2003.

[Votava] Margaret Votava, et al. Tevatron Beam Position Monitor Upgrade Software
Specifications for Data Acquisition, version 22, AD document #860.

54 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004
Fermilab/AD/TEV

Beams-doc-1067-v13
Date April 13, 2004

Tevatron BPM Software Design for Data Acquisition

L.Piccoli
M.Votava
D.Zhang
D.Charak
Introduction
References
Change Log
Version Issue Date Description of Change
1.0 March 10, 2004 | Original
2.0 March 11, 2004
3.0 March 12, 2004
4.0 March 15, 2004
5.0 March 16, 2004
6.0 March 24, 2004
7.0 March 26, 2004
8.0 March 26, 2004
9.0 March 31, 2004
10.0 March 31, 2004
11.0 April 1%, 2004
12.0 April 2™, 2004
13.0 April 13, 2004

55 6/23/04

Tevatron BPM Front-End Software Design for Data Acquisition, Version 16.0, 6/23/2004

Concurrence

Following persons reviewed and concur with the content of this document.

Steve Wolbers, Project Manager (/ /)

Bob Webber, Deputy Project Manager (/ /)

Jim Steimel, Technical Coordinator (/ /)

Brian Hendricks, Subsystem manager (/ /)

Following persons reviewed this document:
Jim Kowalkowski

Duane Voy
Charles Briegel

56 6/23/04

	Introduction
	Proposed Tevatron BPM Software
	Control
	Buffering
	Data Acquisition
	ACNET Communication
	Buffer Readout
	Debug and Diagnostics
	Calibration
	Software Diagram

	Software Design
	Use Cases
	Initialization
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Mode Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Buffer Readout
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Diagnostic
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Alarm
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Data Acquisition
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	State Device Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Configuration Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Calibration
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Front-End Events
	Arming and Triggering
	Tevatron BPM Data Buffers
	Tevatron Metadata
	Tevatron BPM State Diagram
	Class Diagrams
	Tasks
	Controls
	Events
	Event Listeners and Generators
	Data
	Alarms

	Timing Diagrams
	Activity Diagrams
	Sequence Diagrams
	Initialization
	Mode Change
	Buffer Readout
	Alarms
	Events
	Data Acquisition

	Packages
	Generic BPM classes (GBPM)
	Tevatron BPM classes (TBPM)
	TBPM Buffers

	Implementation
	Building The Generic Framework
	Building Tevatron BPM Software

	Appendix
	Class Diagram

	Bibliography

